Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460800

RESUMO

Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Humanos , Criança , Camundongos , Animais , Serotonina/metabolismo , Receptor 5-HT1A de Serotonina , Asfixia , Fluoxetina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Receptores de Serotonina , Cognição , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Hipóxia
3.
Mol Psychiatry ; 28(7): 2946-2963, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37131076

RESUMO

While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.


Assuntos
Condicionamento Psicológico , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Regulação para Baixo , Condicionamento Psicológico/fisiologia , Memória/fisiologia , Medo/fisiologia , Camundongos Knockout , Extinção Psicológica/fisiologia
4.
Biol Psychiatry ; 94(4): 310-321, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120061

RESUMO

BACKGROUND: Parvalbumin (PV)-positive GABAergic (gamma-aminobutyric acidergic) cells provide robust perisomatic inhibition to neighboring pyramidal neurons and regulate brain oscillations. Alterations in PV interneuron connectivity and function in the medial prefrontal cortex have been consistently reported in psychiatric disorders associated with cognitive rigidity, suggesting that PV cell deficits could be a core cellular phenotype in these disorders. The p75 neurotrophin receptor (p75NTR) regulates the time course of PV cell maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development affects adult prefrontal PV cell connectivity and cognitive function is unknown. METHODS: We generated transgenic mice with conditional knockout of p75NTR in postnatal PV cells. We analyzed PV cell connectivity and recruitment following a tail pinch by immunolabeling and confocal imaging in naïve mice or following p75NTR re-expression in preadolescent or postadolescent mice using Cre-dependent viral vectors. Cognitive flexibility was evaluated using behavioral tests. RESULTS: PV cell-specific p75NTR deletion increased both PV cell synapse density and proportion of PV cells surrounded by perineuronal nets, a marker of mature PV cells, in adult medial prefrontal cortex, but not visual cortex. Both phenotypes were rescued by viral-mediated reintroduction of p75NTR in preadolescent, but not postadolescent, medial prefrontal cortex. Prefrontal cortical PV cells failed to upregulate c-Fos following a tail-pinch stimulation in adult conditional knockout mice. Finally, conditional knockout mice showed impaired fear memory extinction learning as well as deficits in an attention set-shifting task. CONCLUSIONS: These findings suggest that p75NTR expression in adolescent PV cells contributes to the fine-tuning of their connectivity and promotes cognitive flexibility in adulthood.


Assuntos
Parvalbuminas , Receptor de Fator de Crescimento Neural , Animais , Camundongos , Cognição , Interneurônios/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
5.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37072176

RESUMO

SYNGAP1 haploinsufficiency in humans causes intellectual disability (ID). SYNGAP1 is highly expressed in cortical excitatory neurons and, reducing its expression in mice accelerates the maturation of excitatory synapses during sensitive developmental periods, restricts the critical period window for plasticity, and impairs cognition. However, its specific role in interneurons remains largely undetermined. In this study, we investigated the effects of conditional Syngap1 disruption in medial ganglionic eminence (MGE)-derived interneurons on hippocampal interneuron firing properties and excitatory synaptic inputs, as well as on pyramidal cell synaptic inhibition and synaptic integration. We show that conditional Syngap1 disruption in MGE-derived interneurons results in cell-specific impairment of firing properties of hippocampal Nkx2.1 fast-spiking interneurons, with enhancement of their AMPA receptor (AMPAR)-mediated excitatory synaptic inputs but compromised short-term plasticity. In contrast, regular-spiking Nkx2.1 interneurons are largely unaffected. These changes are associated with impaired pyramidal cell synaptic inhibition and enhanced summation of excitatory responses. Unexpectedly, we found that the Syngap1flox allele used in this study contains inverted loxP sites and that its targeted recombination in MGE-derived interneurons induces some cell loss during embryonic development and the reversible inversion of the sequence flanked by the loxP sites in postmitotic cells. Together, these results suggest that Syngap1 plays a role in cell-specific regulation of hippocampal interneuron function and inhibition of pyramidal cells in mice. However, because of our finding that the Syngap1flox allele used in this study contains inverted loxP sites, it will be important to further investigate interneuron function using a different Syngap1 conditional allele.


Assuntos
Interneurônios , Células Piramidais , Humanos , Camundongos , Animais , Camundongos Transgênicos , Interneurônios/fisiologia , Células Piramidais/fisiologia , Hipocampo/metabolismo , Recombinação Genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
6.
Neurobiol Dis ; 180: 106097, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967064

RESUMO

We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.


Assuntos
Epilepsias Parciais , Simportadores , Animais , Humanos , Ligantes , Convulsões , Receptores de GABA-A , Ácido gama-Aminobutírico
7.
Sci Rep ; 12(1): 3186, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210456

RESUMO

Sexual differentiation of the brain is influenced by testosterone and its metabolites during the perinatal period, when many aspects of brain development, including the maturation of GABAergic transmission, occur. Whether and how testosterone signaling during the perinatal period affects GABAergic transmission is unclear. Here, we analyzed GABAergic circuit functional markers in male, female, testosterone-treated female, and testosterone-insensitive male rats after the first postnatal week and in young adults. In the hippocampus, mRNA levels of proteins associated with GABA signaling were not significantly affected at postnatal day (P) 7 or P40. Conversely, membrane protein levels of KCC2, which are critical for determining inhibition strength, were significantly higher in females compared to males and testosterone-treated females at P7. Further, female and testosterone-insensitive male rats at P7 showed higher levels of the neurotrophin BDNF, which is a powerful regulator of neuronal function, including GABAergic transmission. Finally, spontaneous GABAergic currents in hippocampal CA1 pyramidal cells were more frequent in females and testosterone-insensitive males at P40. Overall, these results show that perinatal testosterone levels modulate GABAergic circuit function, suggesting a critical role of perinatal sex hormones in regulating network excitability in the adult hippocampus.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Simportadores/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Testosterona/farmacologia , Síndrome de Resistência a Andrógenos/genética , Animais , Animais Recém-Nascidos/metabolismo , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Caracteres Sexuais
8.
Brain ; 145(2): 754-769, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34791091

RESUMO

Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy; however, whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Animais , Biomarcadores , Eletroencefalografia , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Percepção , Proteínas Ativadoras de ras GTPase/genética
9.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
10.
J Neurosci ; 41(43): 8876-8886, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503995

RESUMO

Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.


Assuntos
Córtex Cerebral/metabolismo , Neurônios/metabolismo , Parvalbuminas/biossíntese , Fatores de Transcrição SOXD/biossíntese , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Parvalbuminas/genética , Fatores de Transcrição SOXD/genética , Sinapses/genética
11.
Nat Commun ; 12(1): 3653, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135323

RESUMO

The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


Assuntos
Interneurônios/patologia , Parvalbuminas/metabolismo , Comportamento Social , Proteína 1 do Complexo Esclerose Tuberosa/deficiência , Animais , Autofagia , Axônios/efeitos dos fármacos , Axônios/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Mutação , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
12.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156977

RESUMO

The majority of patients affected with lysosomal storage disorders (LSD) exhibit neurological symptoms. For mucopolysaccharidosis type IIIC (MPSIIIC), the major burdens are progressive and severe neuropsychiatric problems and dementia, primarily thought to stem from neurodegeneration. Using the MPSIIIC mouse model, we studied whether clinical manifestations preceding massive neurodegeneration arise from synaptic dysfunction. Reduced levels or abnormal distribution of multiple synaptic proteins were revealed in cultured hippocampal and CA1 pyramidal MPSIIIC neurons. These defects were rescued by virus-mediated gene correction. Dendritic spines were reduced in pyramidal neurons of mouse models of MPSIIIC and other (Tay-Sachs, sialidosis) LSD as early as at P10. MPSIIIC neurons also presented alterations in frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents, sparse synaptic vesicles, reduced postsynaptic densities, disorganized microtubule networks, and partially impaired axonal transport of synaptic proteins. Furthermore, postsynaptic densities were reduced in postmortem cortices of human MPS patients, suggesting that the pathology is a common hallmark for neurological LSD. Together, our results demonstrate that lysosomal storage defects cause early alterations in synaptic structure and abnormalities in neurotransmission originating from impaired synaptic vesicular transport, and they suggest that synaptic defects could be targeted to treat behavioral and cognitive defects in neurological LSD patients.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Mucopolissacaridose III , Células Piramidais , Vesículas Secretórias/metabolismo , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Progressão da Doença , Descoberta de Drogas , Hipocampo/patologia , Camundongos , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/psicologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Transporte Proteico , Células Piramidais/metabolismo , Células Piramidais/patologia
13.
Front Cell Neurosci ; 15: 813441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069119

RESUMO

The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl-]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.

14.
Handb Clin Neurol ; 173: 43-53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32958189

RESUMO

Optimal brain function critically hinges on the remarkably precise interconnections made among millions of neurons. These specialized interconnected neuronal junctions, termed synapses, are used for neuronal communication, whence the presynaptic neurons releases a specific neurotransmitter, which then binds to the appropriate protein receptor on the membrane of the postsynaptic neuron, activating and eliciting a response in this connected neuron. In this chapter, we discuss how synapses form and are modified as the brain matures. Genetic programs control most of the wiring in the brain, from allowing axons to choose where to target their synapses, to determining synapse identity. However, the final map of neuronal connectivity in the brain crucially relies on incoming sensory information during early childhood to strengthen and refine the preexisting synapses thus allowing both nature and nurture to shape the final structure and function of the nervous system (Fig. 5.1). Finally, we discuss how advances in the knowledge of basic mechanisms governing synapse formation and plasticity can shed light on the pathophysiology of neurodevelopmental disorders.


Assuntos
Plasticidade Neuronal , Sinapses , Axônios , Humanos , Neurogênese , Neurônios
15.
Cereb Cortex ; 30(1): 256-268, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31038696

RESUMO

Methyl-CpG-binding protein 2 (MeCP2) mutations are the primary cause of Rett syndrome, a severe neurodevelopmental disorder. Cortical parvalbumin GABAergic interneurons (PV) make exuberant somatic connections onto pyramidal cells in the visual cortex of Mecp2-deficient mice, which contributes to silencing neuronal cortical circuits. This phenotype can be rescued independently of Mecp2 by environmental, pharmacological, and genetic manipulation. It remains unknown how Mecp2 mutation can result in abnormal inhibitory circuit refinement. In the present manuscript, we examined the development of GABAergic circuits in the primary visual cortex of Mecp2-deficient mice. We identified that PV circuits were the only GABAergic interneurons to be upregulated, while other interneurons were downregulated. Acceleration of PV cell maturation was accompanied by increased PV cells engulfment by perineuronal nets (PNNs) and by an increase of PV cellular and PNN structural complexity. Interestingly, selective deletion of Mecp2 from PV cells was sufficient to drive increased structure complexity of PNN. Moreover, the accelerated PV and PNN maturation was recapitulated in organotypic cultures. Our results identify a specific timeline of disruption of GABAergic circuits in the absence of Mecp2, indicating a possible cell-autonomous role of MeCP2 in the formation of PV cellular arbors and PNN structures in the visual cortex.


Assuntos
Neurônios GABAérgicos/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Parvalbuminas/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Interneurônios/fisiologia , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Córtex Visual/citologia
16.
Biol Res Nurs ; 21(5): 500-509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288563

RESUMO

Pain can have negative, physiological and psychological impacts on pregnancy. Pregnant women are fearful of using pain medication because of teratogenic effects. In this study, we evaluated whether exercise could lower pain sensitivity in pregnant mice with neuropathic pain and reduce the negative effects of maternal pain on newborns. We randomly assigned 32 female mice to one of four groups (eight mice/group): Sham surgery with standard environment (SE) or enriched environment (EE) or spare nerve injury (SNI) with SE or EE. Mice in EE groups had access to an exercise wheel. Mothers were evaluated for mechanical sensitivity with Von Frey filaments and for exercise performance with computerized running wheels. Mice were impregnated 2 weeks after the initiation of EE. Pups were weighed and measured for length at birth and evaluated for negative geotaxis, righting, forelimb grasping, rooting, and crawling at 3 days postpartum and for crawling at 6 days postpartum. Following euthanasia, mothers' frontal cortexes were analyzed for selected neuropeptides. After exercise exposure, only SNI-SE females remained neuropathic. Exercise levels were similar between EE groups. Some brain neuropeptides (endorphins, enkephalins, and oxytocin) from SNI females showed significant differences with exercise. Number of pups was significantly smaller in the SNI-SE group. Significantly more pups died at birth in the SNI-SE group, but pup behavior tests (except righting) were similar across groups. Exercise can reduce neuropathic pain in pregnant mice. Neuropathic pain does not impact motor neurodevelopment of mice pups but does appear to affect litter size and neonatal mortality.


Assuntos
Atividade Motora/fisiologia , Neuralgia/terapia , Condicionamento Físico Animal/métodos , Prenhez , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Medição da Dor , Gravidez , Desempenho Psicomotor/fisiologia , Distribuição Aleatória
17.
J Neurosci ; 39(23): 4489-4510, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936240

RESUMO

By virtue of their extensive axonal arborization and perisomatic synaptic targeting, cortical inhibitory parvalbumin (PV) cells strongly regulate principal cell output and plasticity and modulate experience-dependent refinement of cortical circuits during development. An interesting aspect of PV cell connectivity is its prolonged maturation time course, which is completed only by end of adolescence. The p75 neurotrophin receptor (p75NTR) regulates numerous cellular functions; however, its role on cortical circuit development and plasticity remains elusive, mainly because localizing p75NTR expression with cellular and temporal resolution has been challenging. By using RNAscope and a modified version of the proximity ligation assay, we found that p75NTR expression in PV cells decreases between the second and fourth postnatal week, at a time when PV cell synapse numbers increase dramatically. Conditional knockout of p75NTR in single PV neurons in vitro and in PV cell networks in vivo causes precocious formation of PV cell perisomatic innervation and perineural nets around PV cell somata, therefore suggesting that p75NTR expression modulates the timing of maturation of PV cell connectivity in the adolescent cortex. Remarkably, we found that PV cells still express p75NTR in adult mouse cortex of both sexes and that its activation is sufficient to destabilize PV cell connectivity and to restore cortical plasticity following monocular deprivation in vivo Together, our results show that p75NTR activation dynamically regulates PV cell connectivity, and represent a novel tool to foster brain plasticity in adults.SIGNIFICANCE STATEMENT In the cortex, inhibitory, GABA-releasing neurons control the output and plasticity of excitatory neurons. Within this diverse group, parvalbumin-expressing (PV) cells form the larger inhibitory system. PV cell connectivity develops slowly, reaching maturity only at the end of adolescence; however, the mechanisms controlling the timing of its maturation are not well understood. We discovered that the expression of the neurotrophin receptor p75NTR in PV cells inhibits the maturation of their connectivity in a cell-autonomous fashion, both in vitro and in vivo, and that p75NTR activation in adult PV cells promotes their remodeling and restores cortical plasticity. These results reveal a new p75NTR function in the regulation of the time course of PV cell maturation and in limiting cortical plasticity.


Assuntos
Envelhecimento/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Maturidade Sexual/fisiologia , Córtex Visual/crescimento & desenvolvimento , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Conectoma , Potenciais Evocados Visuais , Feminino , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/química , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Parvalbuminas/análise , Precursores de Proteínas/farmacologia , Distribuição Aleatória , Receptores de Fator de Crescimento Neural/biossíntese , Receptores de Fator de Crescimento Neural/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sinapses/fisiologia , Visão Monocular/fisiologia , Córtex Visual/citologia , Córtex Visual/metabolismo
18.
Cereb Cortex ; 28(11): 4049-4062, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169756

RESUMO

KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Espinhas Dendríticas/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Simportadores/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células Piramidais/fisiologia , Ratos Sprague-Dawley , Simportadores/metabolismo
19.
Prog Neurobiol ; 162: 1-16, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197650

RESUMO

The K+-Cl- co-transporter KCC2 is a neuron-specific, Cl- extruder that uses K+ gradient for maintaining low intracellular [Cl-]. It is indeed well established that sustaining an outwardly-directed electrochemical Cl- gradient across the neuronal membrane is fundamental for a proper function of postsynaptic GABAA receptor signaling. In particular, studies in the last two decades have shown that KCC2 activity is important to maintain a hyperpolarizing GABAergic neurotransmission. Conversely, low KCC2 activity should lead to depolarizing, and under specific conditions, excitatory GABAergic transmission. Not surprisingly given the critical role of KCC2 in regulating the inhibitory drive, alterations in its expression levels and activity are linked with epilepsy. Here, we will first summarize data regarding the role of KCC2 in epileptiform synchronization. Next, we will review evidence indicating that KCC2 expression and function are altered in chronic epileptic disorders, both in the developing and adult brain. We will also go through recent findings regarding the molecular mechanisms underlying the changes in KCC2 activity that occur following seizures. Finally, we will consider the modulation of KCC2 function as a potential, novel therapeutic target for the treatment of epileptic disorders.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Simportadores/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Simportadores/metabolismo
20.
Hum Mol Genet ; 26(12): 2307-2320, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369449

RESUMO

Scribble1 (Scrib1) is a tumor suppressor gene that has long been established as an essential component of apicobasal polarity (ABP). In mouse models, mutations in Scrib1 cause a severe form of neural tube defects (NTDs) as a result of a defective planar cell polarity (PCP) signaling. In this study, we dissected the role of Scrib1 in the pathogenesis of NTDs in its mouse mutant Circletail (Crc), in cell lines and in a human NTD cohort. While there were no obvious defects in ABP in the Scrib1Crc/Crc neuroepihelial cells, we identified an abnormal localization of the apical protein Par-3 and of the PCP protein Vangl2. These results were concordant with those obtained following a partial knockdown of Scrib1 in MDCK II cells. Par-3 was able to rescue the localization defect of Vangl1 (paralog of Vangl2) caused by partial knockdown of Scrib1 suggesting that Scrib1 exerts its effect on Vangl1 localization indirectly through Par-3. This conclusion is supported by our findings of an apical enrichment of Vangl1 following a partial knockdown of Par-3. Re-sequencing analysis of SCRIB1 in 473 NTD patients led to the identification of 5 rare heterozygous missense mutations that were predicted to be pathogenic. Two of these mutations, p.Gly263Ser and p.Gln808His, and 2 mouse NTD mutations, p.Ile285Lys and p.Glu814Gly, affected Scrib1 membrane localization and its modulating role of Par-3 and Vangl1 localization. Our study demonstrates an important role of Scrib1 in the pathogenesis of NTDs through its mediating effect of Par-3 and Vangl1/2 localization and most likely independently of ABP.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Polaridade Celular/genética , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mutação , Mutação de Sentido Incorreto , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...